设为首页| 收藏本站| 联系我们

萃取精馏教学实验指导书

一、实验装置设计
1.实验装置流程
实验装置流程如图1 所示。
2.汽液相平衡模型预测
汽液相平衡关系是萃取精馏模拟设计的基础,考虑物系中各组分均为极性化合物,选用预测精度较高的活度系数模型。本设计选择Wilson、NRTL和UNIQUAC模型预测乙醇-水二元体系汽液相平衡,三类模型预测结果与实验值均保持较好的一致;但对共沸温度和共沸点组成,Wilson模型预测误差较大,UNIQUAC模型结果与实验值相差最小,这一预测结果与文献数据基本保持一致。另外,UNIQUAC预测发现乙二醇-水汽液相平衡线偏离y=x线很大,表明乙二醇萃取剂回收流程较为简易,实验中可通过萃取精馏塔流程改造来实现萃取剂回收操作。

1,2,3-高位槽,4,5,6,9-转子流量计,7-三段式萃取精馏塔,8-冷却器,10-产品罐,11-真空装置
图1 乙二醇萃取精馏乙醇-水恒沸物系实验流程图
3.萃取精馏过程MESHRF工程模型
利用流程模拟设计开发分离工艺较经验方法有诸多优点,可充分利用动量、热量和质量传递的理论基础,结合必要的物性实验数据,数值模拟精馏塔内汽、液相流量、组成、温度分布关系等关键操作参数。本研究结合平衡级MESH 方程组和非平衡速率级RF方程组建立描述萃取精馏的过程工程模型,一般涉及6 类守恒关系式:
1)物料平衡M 方程。M 方程包含i 组分的总物料衡算式:

式中:F、S、D 和W 分别为进料量、萃取剂量、精馏塔顶采出量和塔底采出量,kg /h; Lj和Vj分别为第j 块塔板的液相和气相流量,kg /h;xi,j和为yi,j分别是第j 块塔板或j 类液相和气相中i 组分的质量分率;当j 为非进料级时,F=0。
2)相平衡E 方程

式中:Ki,j是i 组分在第j 块塔板的气液平衡常数;C 为总物料数;N 为总理论板数。
3)热量平衡H 方程

式中:Hi,j为i 在第j 级塔板上的焓值,kJ /kg;L 和V 分别为液相和气相;Ql,j是第j 级塔板热损失,kJ /h。
4)归一化S 方程。j 级平衡板汽液两相组成应满足:

5)气、液相间非平衡级的传质、传热动力学R方程。
6)精确描述萃取塔内气、液两相非均匀混合和非理想流动性质F 方程式。
此模型采用Aspen Plus 软件RadFrac 模块Equilibrium 和Rate-based 速率级算法模拟设计,部分关键参数的模拟结果如表1 所示。

表1 萃取精馏塔优化设计部分模拟结果
二、实验步骤
1.实验准备
为便于实验室组装,选用金属θ 环填料,每米与20 块理论板相当。塔体分溶剂回收、精馏和提馏3段装配,内径均为29 mm 磨口玻璃柱,填料高为0.20、0.60 和0.30 m,此分段主要是考虑萃取塔作为溶剂回收塔时,精馏段与提馏段比与模型设计一致均为8 ∶3。具摇摆磁铁漏斗精馏头,三口烧瓶塔釜,200 mm 冷凝器,数显恒温加热套,电加热带,流量计,支架,高位槽,产品罐,离心泵和循环水真空泵。
2.实验装置测试
1)分析方法。将高精度阿贝折光仪与超级恒温水浴连接,调节温度为(20±0.1) ℃。
2)原料配备。将三口烧瓶置于恒温加热套中,并投入少许沸石;将1.0 L,95%乙醇-水溶液和1.0 L乙二醇分别置于高位槽。
3)萃取精馏装置组装。将Ф3 不锈钢θ 环填料填装于精馏塔柱,堆积密度320 kg /m2;串联3 段塔柱,并与三口烧瓶磨口连接,缠绕加热带,接通原料、萃取剂进料口与高位槽间的控制阀和流量计,塔顶装配精馏头和冷凝器,保持全塔密封良好。
4)全回流操作。塔顶冷凝器通冷凝水,将塔釜加热至溶液沸腾,接通加热带电源,缓慢升高电压至塔顶达稳定回流。开始计时,保持全回流操作30 min,使塔内形成稳定浓度梯度,每5 min 记录塔底和塔顶温度。
5)加萃取剂全回流操作。全回流稳定后,调节流量计,使乙二醇以2.0 mL /min 进料(由于萃取剂常温进料,加热带可稍升高电压),维持全回流操作并稳定30 min。
6)连续萃取精馏操作。待全回流稳定后,启动回流比控制器,控制回流比为2.0,塔顶开始出料,每5min 采集塔顶样品,并记录塔釜塔顶温度。用阿贝折光仪分析其组成,直至高位槽中乙醇-水恒沸溶液达到警戒液位,进料停止。
7)溶剂回收操作。当塔顶产品中水含量增加时,停止萃取剂进料,升高塔釜和保温带电压,增大回流比至3.0。由塔顶蒸出较纯水后,分析塔釜乙二醇组成,达标后停止加热,采出溶剂可循环使用。
三、实验结果与讨论
1.萃取精馏过程分析
通过萃取精馏实验操作,得到的数据见表2。

表2 萃取精馏分离乙醇水恒沸溶液实验检测结果
表2 萃取精馏分离乙醇水恒沸溶液实验检测结果由表2 可知,实验35 min 时,未加入萃取剂,全塔为全回流状态,塔顶产品组成与原料相似,为乙醇水的恒沸物,温度为恒沸点;加入乙二醇后,塔顶乙醇产品纯度明显提高,达到99.6%以上,塔顶温度变化较小,此时为纯乙醇沸点,说明萃取剂在精馏过程中起到了萃取精馏的作用。238 min 后,塔顶温度快速升高到101.0 ℃,原料液已达警戒液位,停止进料,塔顶产品分析表明乙醇已被完全萃取精馏分离,塔顶存在大量水,此时停止萃取剂进料进入溶剂回收阶段。290 min后,塔顶分离物中乙二醇含量增加,停止精馏,塔底可获得96.2%乙二醇循环使用。
2.产品乙醇浓度测定
萃取精馏实验中,每5 min 采集塔顶产品分析其组成,实验结果列于表3。
表3 乙醇水恒沸液萃取精馏过程中产品乙醇浓度由
表3 可看出,乙二醇加入后,立即破坏乙醇水恒沸点,塔顶乙醇由恒沸组成的95%迅速升至99.64%,110 min 时,乙醇纯度达到最高99.96%。在70 ~ 165min 内,萃取精馏均能获得纯度高于99%乙醇产品。170 min 时进料停止,随后乙醇被完全萃取分离,塔顶浓度急剧下降,水含量增加,至270 min 时乙醇含量仅0.92%。塔顶温度迅速升至水的沸点,萃取塔分离乙二醇-水溶液,达到萃取剂回收阶段。
3.萃取精馏塔温度曲线测定
图2 给出了塔釜和塔顶温度变化曲线,塔釜温度
比塔顶温度高,起始阶段釜温变化较平缓,为全回流稳定阶段(I);加入萃取剂后(II),温度平缓上升,直至乙醇被完全萃取分离,此时塔釜温度约200 ℃;萃取剂回收阶段(III),塔釜温度保持恒定,这一变化规律有助于实验中通过调节塔釜加热量控制萃取精馏进程。另一方面,与表3 对比可知,塔顶温度变化严格对应着塔顶产品组成的改变,这一规律有助于实验中产品组成控制,第II 阶段为乙醇水恒沸液萃取精馏阶段,塔顶乙醇纯度均达99.9%。

图2 萃取精馏塔釜和塔顶温度变化曲线
萃取精馏终了时,99%乙醇收率为

塔底96.2%乙二醇回收率为

由以上实验表明,此装置实现了乙二醇萃取精馏分离乙醇-水恒沸物系。所用药剂无毒无害,可由学生独立依据过程工程基本理论完成设计并组装实验装置。
萃取精馏是石油化工和医药行业重要的基本分离单元,在化学工程理论教学中由于涉及较复杂的多元物系热力学和动量、热量及质量的“三传”分离动力学过程,其理论教学一直难以指导实际萃取精馏分离工程。本研究利用过程工程的序贯模块法优化设计了可辅助理论教学的萃取精馏实验室装置,通过热力学活性系数模型结合传质动力学MESHRF 模型模拟乙二醇萃取精馏分离乙醇-水恒沸物系,将萃取精馏与溶剂回收流程联合,简化工艺;采用θ 环填料搭建溶剂回收、精馏和提馏三段式连续萃取精馏装置,萃取分离出99%纯度乙醇,收率达91.6%,同时实现萃取剂回收,回收率达94.3%。本研究模型和实验装置均可由学生独立设计完成,装配简便,分离效率高,测量准确,易于操作和控制,在化工过程装备及化工原理理论教学将中发挥积极的作用。


其他技术文章链接:
加强中职学生对弱电与强电认识
好氧堆肥实验装置使用说明
传感器实验台温度控制仪表操作说明
太阳能光伏发电综合实训系统使用说明
电动机技术工作原理及运行维护
电机与拖动实验实训报告
光机电一体化实训设备实验室介绍
机械设计实验室
齿轮范成仪使用说明书
家用电器之电子消毒柜实验指导书
臭氧氧化脱色实验说明书
二氧化碳PVT关系测定实验指导书
空气绝热指数测定装置实验指导书
填料吸收实验装置使用指导书
超滤、纳滤、反渗透多功能膜分离实验装置说明
孔口管嘴实验仪说明书
热电偶制作校验仪说明书
好氧堆肥实验装置实验说明书
沿程阻力系数测定装置说明书
文丘里除尘器性能实验指导书
制冷压缩机性能测试实训装置指导书
化工传热实验装置使用说明书
数据采集板式静电除尘器指导书
《台虎钳》实测绘图组合训练装置
自由对流横管管外放热系数测试装置使用说明书
流体力学综合实验装置使用说明书
《典型零件》实测绘图训练装置
制冷制热工作原理及实验目的
挖掘机液压模拟训练平台操作说明
中温法向辐射率测量仪实验装置的介绍及使用说明
传感器实验台的特点及维护
热电偶校验仪使用说明
热电阻校验装置使用说明
做燃料电池教具实验要注意什么
电机及电气技术实验的基本要求及安全操作规程
交流及直流电源实验操作说明
传感器实验台温度控制仪表操作说明
冲击水浴除尘器实验装置使用说明
变压器耦合推挽功率放大器实验说明
平面磨床面板器件布局图及电路实训单元故障现象
定时兼报警记录仪的使用方法
浅谈职高《电子线路》教学中学生能力的培养
试析自动化专业实验实训室建设与实践教学体系改革
浅析创新电工电子实训教学模式提高学生自主操作能力
谈《维修电工》工学结合一体化教学
电气自动化技术专业生产性实训模式创新
浅谈电工学实验在中专专业课教学中的作用
化工电气自动化专业实训室建设探讨
浅谈液压系统污染物的防与治
关于《液压与气动技术》课程教学探索
试析“新能源导论与创新实践”教学体会与实践
浅谈电力局办公自动化系统的开发模型
两电极电化学CO传感器的研制
传感器教学中学生创新素质的培养
中职实训基地建设的探索与实践
基于PLC多台空调机组的自动控制设计
浅谈析基于FMS的机电一体化教学培训系统开发
电工电子实验技能正确使用的认识
改善机电一体化传动管控教学改革
浅谈电工电子设备中的各种“地”作用
光机电一体化设备中变频器怎么判断故障
中职学生实验中对二极管电路认识
电工电子实训中常见问题总结
工程机械实训室建设的实习报告
中职学生为什么要学电工电子吗
在电工电子实训中几种二极管的测试技巧
关于中职机电一体化专业技能体系的构建
关于中职机电一体化专业学生技能实训探索
电工电子实验中对输入电阻和输出电阻的认识
中职学生如何上好机电一体化课程
浅谈PLC可编程序控制器在电气设备中作用
中职机电一体化设备组装与调试竞赛规程
浅谈中职机电一体化实习(实训)教学考核规范与标准
浅谈中职教师汽车专业技能标准的差异及对策
浅谈煤矿自动化机电技术探索
浅谈中职汽车一般常见故障的诊断方法
中职对机电一体化计算机基础探索
机电一体化技能竞赛促进教学质量的提高
浅谈中职汽车电气设备构造与维修课程实践教学探索
对机电一体化设备安装中几个要点认识
对新型传感器提升电动机性能并降低功耗作用
讲解光机电一体化具体内容包括
浅谈机电一体化技术专业如何适应应用性本科教育
探索中职学校汽车修理专业如何适实践作业
让高职学生了解热电偶现场使用的注意事项
浅谈教学电梯安装实训教学的分析
浅析电梯电气故障原因及解决措施
探索现代电力电子技术应用状况
高职汽车技术服务与营销专业实践教学改革新探
汽车维修职业教育中故障诊断思维方法的培养
浅谈智能楼宇闭路电视监控系统方案
浅谈PLC可编程实训课教学探索
燃料电池发电教学实验平台
PLC可编程控制技术综合实训装置(西门子1200)
家用电器综合实训室设备
光机电一体化实训设备实验室介绍
电机及电气技术实训装置
基础电工电子实验室设备
定制热管换热器实验台
物联网射频识别综合应用实验箱
初级维修电工实验台

我们的优势:

品牌理念品牌理念 标准流程 标准流程 有效沟通有效沟通专业管理 专业管理客户视图 客户视图优秀团队优秀团队品质保证品质保证无忧售后无忧售后
上海茂育科教设备有限公司,立于上海,心怀天下
生产基地:上海松江叶榭工业园

业务电话:021-56311657 , 56411696 , 业务传真:021-56411696 公司邮箱:shanghaimaoyu@126.com
教学设备厂 沪公网安备 31010702001294 号 沪ICP备13020377号-1
备案